Minimally Comparing Relational Abstract Domains

Kenny Ballou

Elena Sherman

Boise State University
Boise, Idaho
United States of America

October 2023
\boldsymbol{E}

Outline

(1) Introduction
(2) Background
(3) Approach
(4) Experimental Results
(5) Conclusions

Static analysis computes information about programs

Researchers compare invariants to select efficient and precise analyses

(a) Original Analysis

(b) Improved Analysis

Researchers compare invariants to select efficient and precise analyses

$$
x \rightarrow[0,+\infty) \wedge
$$

$$
y \rightarrow(-\infty,+\infty) \wedge
$$

$$
w \rightarrow(-\infty,+\infty)
$$

$$
\text { if }(y<=x)
$$

$$
\begin{array}{ll}
z \rightarrow[0,+\infty) \wedge & z \rightarrow[0,+\infty) \wedge \\
x \rightarrow[0,+\infty) \wedge & x \rightarrow[0,+\infty) \wedge \\
y \rightarrow[1,+\infty) \wedge & y \rightarrow(-\infty,+\infty) \wedge \\
w \rightarrow(-\infty,+\infty) & w \rightarrow(-\infty,+\infty)
\end{array}
$$

(a) Example Interval Analysis

$$
z \rightarrow\{+\} \wedge x \rightarrow
$$

$$
\{0,+\} \wedge y \rightarrow
$$

$$
\top \wedge w \rightarrow \downarrow^{\top}
$$

$z \rightarrow\{+\} \wedge \quad z \rightarrow\{+\} \wedge$
$x \rightarrow\{0,+\} \wedge \quad x \rightarrow\{0,+\} \wedge$

$$
y \rightarrow\{+\} \wedge \quad y \rightarrow T \wedge w \rightarrow
$$

$$
\begin{aligned}
& y \rightarrow\{+ \\
& w \rightarrow T
\end{aligned}
$$

(b) Example Predicate Analysis

Researchers compare invariants to select efficient and precise analyses

Comparing relational states is non-trivial

(a) Original Relational Analysis

(b) Improved Relational Analysis

Comparing relational states is non-trivial

(a) Original Relational Analysis

(b) Improved Relational Analysis

Comparing relational states is non-trivial

(a) Original Relational Analysis

(b) Improved Relational Analysis

Abstract Domains

Zone Abstract Domain

Abstract Domains

Zone Abstract Domain

$$
\begin{array}{r}
z-x \leq 0 \\
w-y \leq 0 \\
y-x \leq 0 \\
\hline w-x \leq 0
\end{array}
$$

Abstract Domains

Symbolic Predicates ${ }^{1}$

$$
\begin{array}{r}
z \rightarrow\{+\} \\
x \rightarrow\{0,+\} \\
y \rightarrow\{-, 0,+\} \\
w \rightarrow\{-, 0,+\} \\
\hline y \leq x
\end{array}
$$

(b) Relational projection of Symbolic Predicates

(a) Symbolic Predicates (Sign Domain)

[^0]
Identifying minimal changes within Zone states ${ }^{2}$

[^1]
Identifying minimal changes within Zone states ${ }^{2}$

[^2]Formula are compared via logical entailment

Forward

```
(push)
(forall ((w Int) (x Int) (y Int) (z Int))
    (assert (=> (and (<= z y) (<= y x))
                (and (<= z y) (<= y x) (<= w x)))))
(check-sat)
(pop)
```

Backward

```
(push)
(forall ((w Int) (x Int) (y Int) (z Int))
    (assert (=> (and (<= z y) (<= y x) (<= w x))
                (and (<= z y) (<= y x)))))
(check-sat)
(pop)
```


Minimal union between two sets of invariants

Example

(a) Symbolic Predicate State

(b) Zone State

Minimal union between two sets of invariants

Example

(a) Symbolic Predicate State

(b) Zone State

$$
S_{1}=\{x, y\}
$$

$$
S_{2}=\{w, x, y\}
$$

Minimal union between two sets of invariants

Example

(a) Symbolic Predicate State

(b) Zone State

$$
S_{1}=\{w\} \cup S_{1}^{\prime}
$$

$S_{1} \stackrel{?}{=} S_{2}$

$$
S_{2}=\{w, x, y\}
$$

Minimal union between two sets of invariants

(a) Symbolic Predicate State

(b) Zone State

$$
S_{1}=\{w, x, y\}
$$

$$
S_{1} \equiv S_{2}
$$

$$
S_{2}=\{w, x, y\}
$$

Experimental Evaluation

Research Questions

RQ1 Does our technique affect the invariant comparison between different analysis techniques for the same abstract domain?
RQ2 Does our technique affect the invariant comparison between two different relational abstract domains?
RQ3 How effective and efficient is our algorithm on real-world invariant comparisons?

Experimental Evaluation

Research Questions

RQ1 Does our technique affect the invariant comparison between different analysis techniques for the same abstract domain?
RQ2 Does our technique affect the invariant comparison between two different relational abstract domains?

RQ3 How effective and efficient is our algorithm on real-world invariant comparisons?

Subject Programs

192 Java methods selected from previous research

Experimental Evaluation

Research Questions

RQ1 Does our technique affect the invariant comparison between different analysis techniques for the same abstract domain?
RQ2 Does our technique affect the invariant comparison between two different relational abstract domains?

RQ3 How effective and efficient is our algorithm on real-world invariant comparisons?

Subject Programs

192 Java methods selected from previous research

Experiments

- Compared Zones with different parameters around widening
- Compared Zones vs. Symbolic Predicates

Comparing widening parameters on Zones

Zones, widening after 2 iterations vs. widening after 5 iterations

Comparison	$Z \equiv Z_{k=5}$	$Z \prec Z_{k=5}$
Full	6555	9
Minimal	6562	2

Zones widening after 2 iterations vs. threshold widening after 2 iterations

Comparison	$Z \equiv Z_{\text {ths }}$	$Z \prec Z_{\text {ths }}$
Full	6519	45
Minimal	6545	19

Comparing Zones to Symbolic Predicates

Zones with threshold widening vs. Symbolic Predicates

Comparison	$Z_{\text {ths }} \equiv P$	$Z_{\text {ths }} \prec P$	$Z_{\text {ths }} \succ P$	$Z_{\text {ths }} \prec \succ P$	$Z_{\text {ths }}$? P
Full	1227	3173	196	1947	21
Minimal	3675	2353	248	288	0

Walltime of comparisons between full vs. minimal

(left): Zones with standard widening compared to zones with threshold widening, (right): Zones with threshold widening vs. symbolic predicates.

Comparison of variable reductions per comparison

(left): Zones with standard widening compared to zones with threshold widening, (right): Zones with threshold widening vs. symbolic predicates.

Conclusion

Experimental Results

- Demonstrated a minimal union algorithm for comparing relational abstract domains, eliminating carry-over effects
- Enables more precise comparison between techniques and relational abstract domains
- Empirical evaluations show the algorithm is effective and efficient

Future Work

- Extend to other Weakly-Relational Domains, e.g., Octagons
- Optimize union to consider the pre-order relation between domains

Thank you

Questions?

The work reported here was supported by the U.S. National Science Foundation under award CCF-19-42044.

References I

[1] Kenny Ballou and Elena Sherman. "Identifying Minimal Changes in the Zone Abstract Domain". In: Theoretical Aspects of Software Engineering. Ed. by Cristina David and Meng Sun. Cham: Springer Nature Switzerland, 2023, pp. 221-239. ISBN: 978-3-031-35257-7. DOI: 10.1007/978-3-031-35257-7_13. URL: http://dx.doi.org/10.1007/978-3-031-35257-7_13.
[2] Elena Sherman and Matthew B. Dwyer. "Exploiting Domain and Program Structure to Synthesize Efficient and Precise Data Flow Analyses (T)". In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE) (Nov. 2015). DOI: 10.1109/ase.2015.41.

Common Variable Set Algorithm

```
Require: V(\mathcal{I}})=V(\mp@subsup{\mathcal{I}}{2}{})\wedgeV(\Delta(\mp@subsup{\mathcal{I}}{1}{},d\mp@subsup{v}{1}{}))\subseteqV(\mp@subsup{\mathcal{I}}{1}{})\wedgeV(\Delta(\mp@subsup{\mathcal{I}}{2}{},d\mp@subsup{v}{2}{}))\subseteqV(\mp@subsup{\mathcal{I}}{2}{}
Ensure: }\mp@subsup{S}{1}{}=\mp@subsup{S}{2}{}\subseteqV(\mp@subsup{\mathcal{I}}{1}{}
    1: function CommonVarSet( d
    2:
    3:
    4: while }\mp@subsup{S}{1}{}\not=\mp@subsup{S}{2}{}\mathrm{ do
    5: if S1\supset S2 then
    6: }\quadd\mp@subsup{v}{2}{}\leftarrow\mp@subsup{S}{1}{}\\mp@subsup{S}{2}{
        S2}\leftarrow\mp@subsup{S}{2}{}\cup\textrm{V}(\Delta(\mp@subsup{I}{2}{},d\mp@subsup{v}{2}{}))
        else if S}\mp@subsup{S}{2}{}\supset\mp@subsup{S}{1}{}\mathrm{ then
        dv1}\leftarrow\mp@subsup{v}{2}{\}\\mp@subsup{S}{1}{
        S}\leftarrow\leftarrow\mp@subsup{S}{1}{}\cup\textrm{V}(\Delta(\mp@subsup{\mathcal{I}}{1}{},d\mp@subsup{v}{1}{}))
        else if S}\mp@subsup{S}{1}{}\supset\subset\mp@subsup{S}{2}{}\mathrm{ then
        dv1}\leftarrow\mp@subsup{v}{2}{\\}\mp@subsup{S}{1}{
        dv2}\leftarrow\mp@subsup{v}{2}{}\\mp@subsup{S}{1}{}\\mp@subsup{S}{2}{
        S1}\leftarrow\mp@subsup{S}{1}{}\cup\textrm{V}(\Delta(\mp@subsup{\mathcal{I}}{1}{},d\mp@subsup{v}{1}{}))
        S}\leftarrow\leftarrow\mp@subsup{S}{2}{}\cup\textrm{V}(\Delta(\mp@subsup{\mathcal{I}}{2}{},d\mp@subsup{v}{2}{}))
        end if
        end while
        return S1
    end function
```


[^0]: ${ }^{1}$ Sherman and Dwyer, "Exploiting Domain and Program Structure to Synthesize Efficient and Precise Data Flow Analyses (T)"

[^1]: ${ }^{2}$ Ballou and Sherman, "Identifying Minimal Changes in the Zone Abstract Domain"

[^2]: ${ }^{2}$ Ballou and Sherman, "Identifying Minimal Changes in the Zone Abstract Domain"

