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Abstract. Value-based static analysis techniques express computed pro-
gram invariants as logical formula over program variables. Researchers
and practitioners use these invariants to aid in software engineering and
verification tasks. When selecting abstract domains, practitioners weigh
the cost of a domain against its expressiveness. However, an abstract do-
main’s expressiveness tends to be stated in absolute terms; either math-
ematically via the sub-polyhedra the domain is capable of describing,
empirically using a set of known properties to verify, or empirically via
logical entailment using the entire invariant of the domain at each pro-
gram point. Due to carry-over effects, however, the last technique can
be problematic because it tends to provide simplistic and imprecise com-
parisons.

We address these limitations of comparing, in general, abstract domains
via logical entailment in this work. We provide a fixed-point algorithm
for including the minimally necessary variables from each domain into
the compared formula. Furthermore, we empirically evaluate our algo-
rithm, comparing different techniques of widening over the Zones domain
and comparing Zones to an incomparable Relational Predicates domain.
Our empirical evaluation of our technique shows an improved granularity
of comparison. It lowered the number of more precise invariants when
comparing analysis techniques, thus, limiting the prevalent carry-over
effects. Moreover, it removed undecidable invariants and lowered the
number of incomparable invariants when comparing two incomparable
relational abstract domains.

Keywords: Static Analysis · Abstract Domain Comparison · Data-Flow
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1 Introduction

Various value-based static analysis techniques express computed program in-
variants as a logical formula over program variables. For example, abstract in-
terpretation [7] uses abstract domains such as Zones [16] and Octagons [18] to
describe an invariant as a set of linear integer inequalities in a restricted format.
Other techniques such as symbolic execution [12] and predicate analysis com-
bined with a symbolic component [21] do the same, only using a general linear



integer arithmetic format. These invariants are then used for program verifica-
tion [4,25], program optimization [1,11], and for software development tasks.

Static analysis developers rarely use a computed invariant by itself, but rather
compare them to determine effects of new algorithms or abstract domain choices
on the invariant precision. For example, to evaluate tuning analyzer parameters,

static analysis researchers compare invariant values I and
∼
I from the original

and tuned analyzer runs, respectively. If an invariant becomes more precise, we
conclude that the new technique or a different domain choice results in a more
precise analysis. For relational domains, one can use queries to an SMT solver,
such as Z3 [19], to determine which invariant is more precise by checking their
implication relations.

However, to objectively measure such effects in a computed invariant after
statement s, Is, we need to compare only the part of Is affected by the transfer

function of s, τs. This way, if
∼
I has already been more precise than I before s

and τs has not changed the relevant facts, then the comparison should disregard

the carry-over precision improvement in
∼
Is.

The comparison of two relational invariants I and
∼
I involves two steps: (1)

identifying a changed component of each invariant at a given statement and
(2) performing minimal comparison between the changed components of I and
∼
I. In our previous work [3] we addressed step (1) for the Zones domain where
using data-flow analysis (DFA) information, we developed efficient algorithms
that find a minimally changed set of inequalities in a Zone invariant.

In this work we target step (2), assuming that an abstract domain has some
means to perform step (1) using either elementary or sophisticated algorithms.
Thus, the contributions of this paper include: (a) development and analysis of
a minimal comparison algorithm for relational abstract domains and (b) in-
vestigating its effect on comparisons between different widening techniques for
Zones domain as well as comparison between Zones and incomparable Predicate
domains with a relational component.

The rest of the paper is organized as follows. In Section 2, we provide the
background, context, and motivation for our work. In Section 3, we describe
our fixed-point algorithm. In Section 4, we explain our experimental setup and
evaluation, and in Section 5, we examine the results of our experiments. We
connect this work with previous research in Section 6. Finally, we conclude and
discuss future work in Section 7.

2 Background and Motivation

We refer to an invariant and the corresponding abstract domain as relational if
it is expressed as a conjunction of formulas over program variables, e.g., a set of
linear integer inequalities. We first explain the concept of the minimal/dependent
change for an invariant and then explain challenges of comparing two relational
domains, and sketch how our proposed approach works.



2.1 Minimal changes in relational abstract domains

Consider the relational invariants computed by a data-flow analysis framework
using the Zones abstract domain as shown in Figure 1a. Let us assume the
analyzed code has four program variables: w, x, y, and z. Here, the incoming flow
to the conditional statement has the following invariant: Iin = z ≤ x∧w → >∧
y → >. That is, variables w and y are unbounded while x and z are bounded by
a ≤ relation. The transfer function of the true branch adds the y ≤ x inequality,
thus, making y bounded. This results in the It = z ≤ x ∧ y ≤ x ∧ w → >
invariant. Similarly, the invariant for the false branch becomes If = z ≤ x∧x ≤
y − 1 ∧ w → >.

Even though If and It are new invariants, they inherit two unchanged in-
equalities z ≤ x and w → > from Iin. This suggests that some part of a pre-
viously computed invariants have not changed by the transfer function of the
conditional statement. Thus, if for some program, Iin is more precise because
of z ≤ x and remains more precise in It because of the same inequality, such
carry-over precision results should be disregarded.

Previous work determining minimal changes in a relational abstract domain
approach [3] addresses this problem by identifying the dependent portion of the
invariant affected by the statement’s transfer function. For example, the minimal
change algorithm for Zones [3] can compute the minimal sub-formula given the
potentially changed variables x and y. Specifically, the algorithm identifies only
the y ≤ x part of It having changed from Iin. Likewise for If , the algorithm
identifies two inequalities: z ≤ x and x ≤ y − 1 as the changed portion of the
invariant1.

The minimal change algorithm can be sophisticated and accurately compute
the changed part of the invariants, or can be over-approximating, and in the
worst case return the entire invariant. In our previous work we developed an
efficient collection of such algorithms for the Zones abstract domain. In this
work, we assume that a relational domain has an invariant change method ∆
implemented, which takes as input an invariant and a set of updated variables
and returns a portion of I, e.g., in this example ∆(It, {x, y}) = y ≤ x. The
shaded regions of the invariants in the Figures 1a and 1b indicate the changed
parts of the out state for each branch.

2.2 Comparing relational domains

Now consider invariants in Figure 1b computed for the same code fragment,
but using an improved algorithm. This algorithm is able to compute additional

information for
∼
Iin = z ≤ x ∧ w ≤ y, which is more precise than Iin since

∼
Iin

constrains the values of w and y. The checkmark symbol, 3, by
∼
I in Figure 1b

indicates an increased precision comparing to the corresponding invariants I in
Figure 1a.

1 z ≤ x is included due to transitive effects through x.



if (y <= x)

z ≤ x∧
x ≤ y − 1∧
w → >

z ≤ x∧
y ≤ x∧
w → >

z ≤ x ∧ w → >∧ y → >

f t

(a)

if (y <= x)

z ≤ x∧
x ≤ y − 1∧
w ≤ y

z ≤ x∧
y ≤ x∧
w ≤ y

z ≤ x ∧ w ≤ y

f t

3

7 3

(b)

Fig. 1: Original Static Analysis (a) and Improved Static Analysis (b)

When we compare using the entirety of the invariants instead of simply the
changed portion of the invariants for the false branch, the result would be that
∼
It is more precise than It. Thus, simply applying ∆ for both invariants can filter
out erroneous, carry-over improvements, which we annotate with the 7 symbol.

In the case of the false branch, the set of variables in their respective changed
portions of the invariants are the same. However, this is not always the case,

which we can see on the true branch. There,∆(It, {x, y}) = y ≤ x, but∆(
∼
It, {x, y}) =

y ≤ x∧w ≤ y has an extra variable w. To make a sound comparison, we need to
conjoin w → > with the result of ∆(It, {x, y}). The challenge here is to identify
the smallest necessary additions to the changed portions of the invariants to
perform a sound comparison.

In the next section we present our proposed approach that addressees this
problem by developing a fixed-point algorithm that, in each iteration, discovers
a minimal set of inequalities (modulo ∆) in one invariant that is adequate for
comparison with the changed part of the other invariant.

3 Approach

In this section, we explain the theoretical basis for our approach to minimally
compare relational invariants via logical entailment. We start by defining the
problem, and then we present our algorithm that solves it. At the end, we perform
an analysis of the proposed algorithm.

3.1 Problem definition

We define the problem in a context of a DFA framework, where the framework
provides a set of updated variables, dv, that resulted in a new invariant I. An
abstract domain for I has a function ∆ implemented, which returns a portion
of I that have been updated or are dependent on the variables in the set dv. In
the worst case, ∆(I, dv) = I, i.e., a transfer function affects the entire invariant.
In the best case ∆(I, dv) = ∅, i.e., nothing has changed. We also introduce a



Algorithm 1 Common minimal changed variable set

Require: V (I1) = V (I2) ∧ V (∆(I1, dv1)) ⊆ V (I1) ∧ V (∆(I2, dv2)) ⊆ V (I2)
Ensure: S1 = S2 ⊆ V (I1)
1: function CommonVarSet(dv1, dv2, I1, I2)
2: S1 ← V(∆ (I1, dv1))
3: S2 ← V(∆ (I2, dv2))
4: while S1 6= S2 do
5: if S1 ⊃ S2 then
6: dv2 ← S1 \ S2

7: S2 ← S2∪ V(∆ (I2, dv2)))
8: else if S2 ⊃ S1 then
9: dv1 ← S2 \ S1

10: S1 ← S1∪ V(∆ (I1, dv1)))
11: else if S1 ⊃⊂ S2 then
12: dv1 ← S2 \ S1

13: dv2 ← S1 \ S2

14: S1 ← S1∪ V(∆ (I1, dv1)))
15: S2 ← S2∪ V(∆ (I2, dv2)))
16: end if
17: end while
18: return S1

19: end function

function V that returns the set of variables used in I. For example, we use it to
define the following property: V (∆(I, dv)) ⊆ V (I).

Let I1 and I2 be two relational invariants, and let dv1 and dv2 be their
corresponding sets of updated variables. Then the problem of finding a minimal
changed part of two invariants reduces to finding a common minimal updated
set of variables S such that

S = V (∆(I1, S)) = V (∆(I2, S)) (1)

A minimal solution for such recursive definitions is commonly obtained by
a fixed-point iteration algorithm with initial values S0 set to the smallest set,
which in our case is S0 = dv1∪dv2. If S0 = ∅, then dv1 = dv2 = ∅, ∆(I1, dv1) = ∅,
∆(I2, dv2) = ∅, and, ultimately, S = ∅. That is, nothing has changed between
the two invariants. However, if S0 6= ∅, then we need to iteratively solve for S in
Equation 1.

3.2 Finding a common changed variable set

Algorithm 1 shows the pseudocode of the optimized fixed-point computation
algorithm to solve Equation 1. The algorithm takes as arguments, the updated



variables for each domain, dv1 and dv2, two invariants to compare, I1 and I2. It
requires basic conditions for its correctness: each set of invariants are described
over the same set of variables and ∆ does not introduce any new variables. The
output is the solution for Equation 1.

The algorithm first computes the initial changed variable sets, S1 and S2

for each invariant, lines 2 and 3, affected by the updated variables dv1 and dv2,
respectively.

At line 4, the algorithm compares the two sets and if they are not equal, i.e.,
the fixed-point has not been reached, the algorithm enters the main iteration
loop. Inside the body of the loop, the algorithm first tests whether one set of
variables is a proper superset of the other, lines 5 and 8.

As a simple optimization, if one of the sets is a proper superset, it only
augments the smaller set as done on lines 6–7 and lines 9–10, respectively. For
example, if S1 ⊃ S2, S2 is augmented by the variables which are not already in
S2. Afterwards, a new updated variable set is computed from the set difference of
S1 and S2, line 6. Then, the algorithm computes the changed variable set as the
union between the existing set S2 and the newly computed minimum variables,
line 7. Similar computations are done for the case when S2 ⊃ S1, lines 9–10.

Finally, when the changed variable sets are incomparable— line 11— then
both changed variable sets are recomputed in a similar fashion as described in
lines 12–15. Upon the loop’s termination, i.e., when S1 = S2, the algorithm
returns one of the dependent sets, line 18.

To demonstrate how Algorithm 1 compares two invariants, consider the in-
variants on the true branch from our example in Figure 1b. There, I1 = z ≤
x ∧ y ≤ x ∧ w → > and I2 = z ≤ x ∧ y ≤ x ∧ w ≤ y. The updated variables are
dv1 = {x, y} and dv2 = {x, y}.

The algorithm computes {x, y} for S1 and {w, x, y} for S2. Since S2 is a
proper superset of S1, we recompute S1, lines 9 and 10. Specifically, dv1 be-
comes {w}. S1 is then recomputed: S1 = S1 ∪ V (∆(I1, dv1)), which results in
S1 = {x, y} ∪ {w} = {w, x, y}. At this point, S1 = S2, terminating the loop,
and the algorithm returns the set S1 = {w, x, y}. Then, an SMT solver can be
used to compare logical relations of ∆(I1, S1) and ∆(I2, S1), for example, using
implication relations. Or, in case of comparisons between Zones, one can use its
custom equivalence and inclusion operations [16].

As mentioned, under worst-case conditions, Algorithm 1 returns the entire
set of variables. In other words, it devolves into a full invariant comparison.
This can happen if the variables within the invariant are tightly coupled with all
other variables. Another situation which can cause a worst-case comparison is
when an abstract domain has an ineffective ∆ function, which performs a basic
dependency analysis such as slicing [3,24].

Below we present termination and complexity analysis for Algorithm 1. We
start with a proof sketch of termination.

Proof. First, we begin with the following assumptions: the variable projections
for both domains are equivalent, i.e., V (I1) = V (I2); and we assume the in-



variant minimization functions for each domain yield a subset of the variable
projections, that is, ∆(I1, dv1) ⊆ V (I1), and similarly for I2.

At each iteration, the union of variables over the minimization function is
always increasing by at least one variable in either S1 or S2. Therefore, within
a finite number of iterations S1 and S2 reach fixed-point, which is bounded by
V (I1) = V (I2) condition. Thus, Algorithm 1 terminates. ut

The time-complexity of Algorithm 1 depends on the number of variables and
the complexity of the ∆ functions of the abstract domains. That is, the complex-
ity of Algorithm 1 is O(N) · (C∆1

+C∆2
), where N is the number of variables in

the program under analysis and C∆i is the complexity of the invariant minimiza-
tion function for the corresponding domain. In the worst-case, at each iteration
the sets S1 and S2 augmented by a single variable from ∆ computations.

4 Methodology

To determine the effectiveness of the proposed algorithm, we use it to compare
invariants produced by different techniques and by different relational abstract
domains on the same program. For each subject program, each analysis outputs
invariants after each statement. Over the corpus of programs, we compute 6564
total invariants. We store the invariants as logical formulas in SMT-LIB format.
We run analyses on two relational domains, Zones and Relational Predicates [21],
and compare the results of a standard Zones analysis to advanced Zones analyses,
and Zones analysis to Relational Predicates analysis.

The goal of the empirical evaluation is to answer the following research ques-
tions:

RQ1 Does our technique affect the invariant comparison between different anal-
ysis techniques for the same abstract domain?

RQ2 Does our technique affect the invariant comparison between two different
relational domains?

RQ3 How effective and efficient is Algorithm 1 on real-world invariant compar-
isons?

We consider different analysis techniques over the Zones domain to measure
the precision gained by various advanced techniques. We consider the iteration
parameter before widening. We also consider the widening method employed,
which ensures termination for Zones analysis.

We then compare the most precise Zones technique to Relational Predi-
cates [21], two incomparable domains. Our previous work [3] has shown the
benefit of minimally comparing incomparable domains to demonstrate realized
precision. However, in this case, we extend the invariants of the Predicates do-
main with a symbolic relational component.

For Relational Predicates, the minimization function is a selection based
solely on notions of variable reachability, e.g., variable dependence, but it might
not be minimal because of the generality of inequalities used in the relational



1 (push)
2 ( f o r a l l ( (w Int ) ( x Int ) ( y Int ) ( z Int ) )
3 ( assert (=> (and (<= z y ) (<= y x ) )
4 (and (<= z y ) (<= y x ) (<= w x ) ) ) ) )
5 ( check−sat )
6 (pop)
7 (push)
8 ( f o r a l l ( (w Int ) ( x Int ) ( y Int ) ( z Int ) )
9 ( assert (=> (and (<= z y ) (<= y x ) (<= w x ) )

10 (and (<= z y ) (<= y x ) ) ) ) )
11 ( check−sat )
12 (pop)

Fig. 2: Logical implication between two example abstract states in SMT-LIB.

part. We also computed minimization over Relational Predicates using a purely
connected component concept, similar to the technique by Visser et al. [24],
however, the reachable variant performed marginally better.

We use the Minimal Neighbors (MN) minimization function from our previ-
ous work [3] for Zones which provides the smallest invariant partition given a
set of changed variables. This minimization algorithm considers the semantics of
the formulas under the changed variables. Using these semantics, it selects the
minimal dependent substate from the logical formula representing the invariant.

Subject programs Our subject programs consist of 192 Java methods from
previous research on the Predicates domain [21]. These methods were extracted
from a wide range of real-world, open-source projects and have a high number of
integer operations. The subject programs range from 1 to 1993 Jimple instruc-
tions, a three address intermediate representation. The average branch count for
the methods is 6 (σ = 11), with one method containing a maximal 56 branches.
A plurality of our subject methods, 81 methods, contain at least one loop, with
one method containing 12 loops.

Experimental platform We execute each of the analyses on a cluster of Cen-
tOS 7 GNU/Linux compute nodes, running Linux version 3.10.0-1160.76.1,
each equipped with an Intel® Xeon® Gold 6252 and 192 GB of system mem-
ory. We use an existing DFA static analysis tool [2,21] implemented in the Java
programming language. The analysis framework uses Soot [20,23] version 4.2.1.
Similarly, we use Z3 [19], version 4.8.17 with Java bindings to compare SMT
expressions for the abstract domain states. Finally, we use Java version 11 to exe-
cute the analyses, providing the following JVM options: -Xms4g, -XX:+UseG1GC,
-XX:+UseStringDeduplication, and -XX:+UseNUMA.



Implementation We modified an existing DFA framework such that the Zones
analysis outputs its entire invariant for each program point. Each invariant is
further reduced using a redundant inequality reduction technique proposed by
Larsen et al. [13]. For all domains, unbounded variables are set to top, >, and
excluded from the output expression. This further simplifies the formulas. Using
the formulas from each analysis, in the usual way, we entail them into implication
SMT formulas. For example, if an analysis produces I1 = z ≤ x ∧ y ≤ x and
another produces I2 = z ≤ x ∧ y ≤ x ∧ w ≤ y. We entail these two expressions
into the logical implication SMT query as shown in Figure 2.

After entailment, we use Z3, using the linear integer arithmetic (LIA) the-
ory for Zones to Zones comparisons and the non-linear integer arithmetic (NIA)
theory for Zones to Relational Predicates comparisons, to decide model behavior
of each domain. While Zones, and numerical abstract domains in general, have
understood equality mechanisms such as double inclusion based deciders, entail-
ment allows us to determine the pre-order between the two domain instances.

Evaluations In total, we perform three different invariant comparisons, sum-
marized in the following list:

Z � Zk=5— Zones using standard widening after two iterations and Zones widen-
ing after five iterations.

Z � Zths— Zones with standard widening and Zones with threshold widening.
Zths ≺� P— Zones with threshold widening and Relational Predicates.

In all instances of Zones sans Zk=5, widening happens after two iterations
over widening nodes. We use a generic set of thresholds for Zones based on powers
of 10: {0, 1, 10, 100, 1000}. Using a tuned set of thresholds for each program would
yield better individual results, but overall does not affect our conclusions.

We use a generic disjoint domain for the basis of the Relational Predicates,
based on Collberg et al.’s [6] study of numerical constants in Java Programs.
Specifically, the predicate domain used in this study consists of the following
set of disjoint elements: {(−∞,−5], (−5,−2], −1, 0, 1, [2, 5), [5,+∞)}. The
relational component of the Predicates domain consists of symbolic information
gathered through the process of analysis [21].

5 Evaluation Results and Discussions

In this section, we present the results of our experiments and discuss their im-
plications to the research questions posed in the previous section.

5.1 Technique Comparisons

To answer RQ1, we consider the comparisons of different techniques using the
Zones abstract domain. Since different techniques using the same domain create
a partial ordering of their respective precision, we need only consider equivalent



Comparison Z ≡ Zk=5 Z ≺ Zk=5

Full 6555 9

Minimal 6562 2

Table 1: Zones k = 2 widening com-
pared to Zones k = 5 widening

Comparison Z ≡ Zths Z ≺ Zths
Full 6519 45

Minimal 6545 19

Table 2: Zones compared to Zones
with Threshold Widening

Comparison Zths ≡ P Zths ≺ P Zths � P Zths ≺� P Zths ?P

Full 1227 3173 196 1947 21

Minimal 3675 2353 248 288 0

Table 3: Zones with Threshold Widening compared to Relational Predicates

and less precise outcomes. To verify correctness of our implementation, however,
we ensured that no other precision outcomes occurred.

Table 1 shows the breakdown of invariants computed by standard widening
after two iterations and standard widening after five iterations. Comparing in-
variants using the entire invariant, deferred widening produces nine more precise
invariants. However, when using our minimized comparison technique, the slim
advantage reduces to two invariants.

Table 2 shows the breakdown of invariants between standard widening af-
ter two iterations and threshold widening after two iterations. Here, we see the
largest gain in precision. Using the entire invariant to compare, threshold widen-
ing computes 45 more precise invariants. Again, however, the precision gain is
cut by more than 50% when using minimal comparisons. The choice of thresh-
olds could improve the precision, but for best results, the set of thresholds needs
to be tailored specifically to each program.

As we can see between Z � Zk=5 and Z � Zths, our comparison technique
lowers the number of more precise invariants, thus eliminating the carry-over
precision instances. That is, our technique lowers the number of more precise
invariants advanced techniques compute. However, in doing so, our technique
presents a more nuanced image of the realized precision gain advanced techniques
offer.

5.2 Zones versus Relational Predicates

Table 3 shows the precision breakdown of Zones with threshold widening com-
pared to Relational Predicates, RQ2. Given that Zones and Predicates are in-
herently incomparable domains, we must consider all precision comparison cat-
egories. With the full invariant compairsions, Relational Predicates are more
precise than Zones in about 50% of the invariants. The next largest category
of invariants is incomparable, ≺�, which accounts for 30% of invariants. Here,



Zones and Predicates are complementary, neither more nor less precise than the
other. Zones and Predicates are equivalent in 19% of all invariants, and Zones are
more precise in about 3% of all invariants. Finally, using the full invariant, 21 of
the program points, the relation between two invariants could not be established
by Z3 since it returned UNKNOWN.

Our technique eliminates the undecidable results. Moreover, it dramatically
reduces the number of incomparable invariants– only 4% of invariants remain in-
comparable. Similar to carry-over precision, incomparable invariants arise when
one domain computes a more precise invariant for one variable, and the other do-
main computes a more precise invariant for another, unrelated variable at a later
program point. Considering the entire invariant results in incomparable preci-
sion. However, by comparing only the relevant, changed variables, our technique
largely disentangles the imprecision in the comparison.

The equivalent invariant category is the next largest affected category, where
more than half, 56%, of computed invariants between Zones and Relational Pred-
icates become equivalent. Relational Predicates lose 13% of more precise invari-
ants, and Zones gains about 1% of invariants which it computes more precisely
than Relational Predicates.

By comparing only the necessary variables at each program point, our tech-
nique allows general, relational abstract domains to be compared without unde-
cidable results. The reduction in incomparable invariants between two otherwise
difficult to compare domains provides a clearer precision performance picture
between the two domains.

Effect on efficiency of comparison To demonstrate the effect on efficiency of
comparing our minimal comparison to the full state comparison with respect to
the logical entailment and solver queries, we collected five (5) executions of the
Z3 solver processing the logical entailment queries. Figure 3 shows the averaged
runtime comparisons between Z3 comparing states using the entire state and our
proposed minimal technique. In Figure 3 (a), we compare the runtimes for Zones
versus Zones with Threshold Widening. We see the two runtimes appear simi-
lar. Indeed, a statistical t-test confirms the two distributions fail to be rejected
as similar. However, in the range above the average, 0.04, the majority of the
points are below the diagonal line, indicating that the minimum comparison is
faster than the full comparison. This runtime behavior is expected for these two
abstract domains since the two domains are similar and as shown in Table 2, the
number of states where the two domains are equal is significant. In Figure 3 (b),
we compare the runtimes of Zones with Threshold Widening against Relational
Predicates. The average runtime for the full comparisons is about 2.7 seconds.
The minimum comparison has an average of about 0.8 seconds. We see a signifi-
cant difference between the two visually as the majority of points are below the
diagonal line. As before, these results seem intuitive since the resulting queries
for the proposed technique result in fewer invariants per abstract state. Overall,
we see our technique improves the efficiency of relational domain comparison.
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Fig. 3: Runtime (in seconds) comparisons between full and minimum invariant
sets using Z3 to compute logical entailment. In (a) compares Zones to Zones
with Threshold Widening. In (b) compares Zones with Threshold Widening to
Relational Predicates.

5.3 Iterations and variable reductions

To determine if Algorithm 1 is efficient, RQ3, we use the iteration depth count to
determine how many times the algorithm iterates before it reaches a stable set of
variables for comparison. Over all instances of Zones comparisons, the iteration
count was either zero or one, with no outliers. That is, either Zones computed
the same set of changed variables and the dependent set between two techniques
was immediately equivalent. Or, the set of dependent variables is captured with
only a single extension, mostly to the Zones using standard widening, Z.

Comparing Zones to Relational Predicates, we see similar results. The average
number of iterations is between zero and one iteration. However, we have several
outliers at two iterations. Instrumentation found 12 instances of extreme outliers,
11 for three iterations, and one instance of four iterations. Furthermore, more
variety exists in the branches for Zones versus Relational Predicates. Unlike
comparing techniques between Zones invariants, comparing Zones to a more
general, relational formula required more augmentation by each domain.

To evaluate effectiveness of Algorithm 1, RQ3, we consider the proportion
of variables necessary for comparison. We instrumented our algorithm to com-
pute the proportion of variables it returns after reaching a stable set, compared
to the variable projection of the incoming invariants. We plot the frequency of
proportions of variables returned by Algorithm 1 in Figure 4. In Figure 4a, we
plot variable reductions across all comparisons of Zones: standard widening af-
ter two iterations versus standard widening after five iterations and standard
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Fig. 4: Frequency plot of proportion of variables selected by Algorithm 1 which
are necessary for comparing two invariants. (a) represents the frequencies of pro-
portions when comparing techniques using Zones. (b) represents the frequencies
of proportions when comparing Zones to Relational Predicates.

widening versus threshold widening. Figure 4b shows the variable reductions
for Zones with threshold widening versus Relational Predicates. Considering a
single bin in Figure 4, for example, 0.1, represents the frequency where Algo-
rithm 1 needed only 10% of the variables occurring in the original invariants to
adequately compare the two.

Shown in Figure 4, the large frequencies in the 0 bin shows our technique
was able to remove all variables from the invariants from comparison, eliminat-
ing the need to compare the two invariants. Comparing advanced techniques
utilizing Zones shows more than 6500 instances, and about 1850 in Zones versus
Relational Predicates.

Our technique reduces the number of variables necessary for comparison by
50% or more in 90% of comparisons between techniques of Zones, and at least by
25% in 93% of comparisons. For Zones and Relational Predicates, our technique
reduces the necessary, relevant variables by 50% or more in 80% of comparisons
and by 12% in 93% of comparisons. That is, in the majority of comparisons,
our technique reduces the number of variables necessary for comparing two re-
lational domains or techniques. The quality of a domain’s ∆ function affects
the performance and effectiveness of Algorithm 1. We see only a few iterations
in the algorithm when comparing analysis techniques utilizing Zones since we
used a minimal ∆ function for Zones. However, we see an increase in iterations
when comparing with a non-optimal ∆, as in Zones and Relational Predicates.
That is, the quality of ∆ can have an outsized impact on the practicality of



our technique. However, given the preponderance of variable reductions and low
iteration counts over the corpus of methods and comparisons, we conclude that
the proposed algorithm is practical and effective.

5.4 Discussion

The evaluation results show our technique enables more precise comparison be-
tween relational abstract domain invariants. When comparing two techniques
using the same domain, our minimal comparison strategy precisely captures the
techniques’ relative precision, disentangling accumulated carry-over effects from
realized precision gains.

While we do not have a proven state minimization function for Relational
Predicates, our technique still shows improvement when comparing incomparable
relational abstract domains. Specifically, our comparison removes unknowns and
dramatically reduced incomparable invariants, which makes it easier to make
software engineering decisions.

The average iteration depth for Algorithm 1 shows the algorithm’s efficiency
and practicality. Even when using an imprecise minimization function for Rela-
tional Predicates, our technique only needed a maximum of four iterations to
arrive at a stable set of common variables for comparison. Moreover, in the ma-
jority of comparisons, Algorithm 1 returned a significantly smaller proportion of
variables than the entirety of the variables in each invariant, demonstrating the
efficacy of the technique.

6 Related Work

Our previous work [3] found a set of algorithms for efficiently computing ∆
for the Zones domain. Using the algorithms, it compared Zones to other non-
relational domains, which in the context of data-flow analysis (DFA) and this
work, have trivial ∆ functions. We extend the previous work by considering
comparisons between relational abstract domains, abstracting the ∆ function
for each domain.

Comparing the precision gain of new analysis techniques or comparing the
precision of newly proposed abstract domains is a common problem in the lit-
erature. Previous work in this area generally compare precision in one of two
ways. One, the comparison is based on known a priori program properties over
benchmark programs [8,9,10,14,15]. Two, the comparison is based on logical en-
tailment of computed invariants [10,17,21].

Close to our work, Casso et al. [5] propose several metrics for computing
the distance between different abstract domain elements and, consequently, the
distance between different analyses over those abstract domains. Thus, using
distance metrics as a proxy, they are able to compute a categorization of preci-
sion over different abstract domains. However, the work and proposed metrics
are constrained to non-numerical abstract domains within (Constraint) Logic
Programming. We believe a combination of approaches toward (a set of) metrics



that measures across different weakly-relational numerical abstract domains to
be an interesting line of future work.

To the best of our knowledge, this work represents one of the first studies
improving the granularity of precision characteristics for categorization of rela-
tional abstract precision comparisons. We believe this work would benefit exist-
ing work which compares relational abstract domains or new analysis techniques
using relational abstract domains.

7 Conclusion and Future Work

In this study, we defined the problem of minimally comparing relational invari-
ants, proposed an algorithm which solves the problem, and experimentally evalu-
ated whether the algorithm indeed solves the problem using real-world programs.
Using our algorithm, we can remove the precision carry-over effects advanced
analysis techniques introduce, providing clear precision benefits for advanced
techniques. For example, the benefits of deferred widening and threshold widen-
ing are smaller than anticipated. Moreover, our technique enables the comparison
of relational abstract domains which are otherwise difficult to compare directly.
Specifically, we see our technique removed the UNKNOWN invariants and dramati-
cally reduced the incomparable invariants when comparing Zones to Relational
Predicates. Finally, Algorithm 1’s average iteration depth and variable reduction
demonstrate the algorithm’s overall practicality and usefulness when comparing
analysis techniques and relational abstract domains.

Future Work Developing a minimization function, ∆ for Relational Predi-
cates would enable a comprehensive, empirical study of the relative precision
of weakly-relational numerical abstract domains to Predicates. Furthermore, we
believe the proposed technique of comparison can benefit adaptive analysis tech-
niques which selectively choose the appropriate abstract domain during analy-
sis. Similarly, an interesting, additional empirical comparison to consider is one
where strictly the exit invariants are considered between domains and strategies.
Octagons [18] are not included in this study because a minimization strategy for
Octagons has not been developed. However, this is an interesting avenue to
pursue and we intend to use the technique of this work to compare Zones to
Octagons, which will empirically quantify the precision gain of Octagons over
Zones.

Acknowledgments

The work reported here was supported by the U.S. National Science Foundation
under award CCF-19-42044. 2

2 Publisher copy can be found at the following address: https://doi.org/10.1007/
978-3-031-45332-8_8.

https://doi.org/10.1007/978-3-031-45332-8_8
https://doi.org/10.1007/978-3-031-45332-8_8


References

1. Abate, C., Blanco, R., Ciobâcă, c., Durier, A., Garg, D., Hritţcu, C., Patrignani,
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