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Abstract. Verification techniques express program states as logical for-
mulas over program variables. For example, symbolic execution and ab-
stract interpretation encode program states as a set of linear integer
inequalities. However, for real-world programs these formulas tend to
become large, which affects scalability of analyses. To address this prob-
lem, researchers developed complementary approaches which either re-
move redundant inequalities or extract a subset of inequalities sufficient
for specific reasoning, i.e., formula slicing. For arbitrary linear integer
inequalities, such reduction approaches either have high complexities or
over-approximate. However, efficiency and precision of these approaches
can be improved for a restricted type of logical formulas used in re-
lational numerical abstract domains. While previous work investigated
custom efficient redundant inequality elimination for Zones states, our
work examines custom semantic slicing algorithms that identify a mini-
mal set of changed inequalities in Zones states.
The client application of the minimal changes in Zones is an empirical
study on comparison between invariants computed by data-flow analysis
using Zones, Intervals and Predicates numerical domains. In particular,
evaluations compare how our proposed algorithms affect the precision of
comparing Zones vs. Intervals and Zones vs. Predicates abstract domains.
The results show our techniques reduce the number of variables by more
than 70% and the number of linear inequalities by 30%, comparing to
those of full states. The approach refines the granularity of comparison
between domains, reducing incomparable invariants between Zones and
Predicates from 52% to 4%, and increases equality of Intervals and Zones,
invariants from 27% to 71%. Finally, the techniques improve the com-
parison efficiency by reducing total runtime for all subject comparisons
for Zones and Predicates from over four minutes to a few seconds.

Keywords: Abstract domains · Abstract interpretation · Static analysis
· Program analysis

1 Introduction

Many verification techniques express a program state as a logical formula over
program variables. For example, symbolic execution uses a logical formula to
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describe a path constraint; in abstract interpretation, relational domains such
as Zones or Polyhedra use a set of linear integer inequalities to describe program
invariants. While expressive, this logical representation can become quite difficult
to handle efficiently. For example, when symbolic execution traverses deep paths,
or when relational domains encode numerous program variables. The increase in
formula size causes verification tasks to run out of memory or timeout. Thus, to
improve scalability, verification techniques need to efficiently handle these large
logical formulas.

To overcome this predicament, researchers consider two complementary ap-
proaches. The first one focuses on eliminating the number of redundant con-
straints using techniques such as Motzkin-Chernikova-Le Verge [6,21] algorithm
for linear integer inequalities. Previous work, for example, used it to minimize
path constraints in symbolic execution [22].

The second approach focuses on identifying a minimal set of constraints nec-
essary to reason about a specific task, for example, identifying a set of linear
inequalities affected by state change. Green [33] performs the slicing operation
on a path constraint formula to determine a set of linear inequalities affected by
a newly added constraint. Identifying relevant constraints reduces the query size
sent to an SMT solver to check for satisfiability.

However, these minimization techniques assume a general format of linear in-
equalities, which for a logical formula over linear integer inequalities of restricted
types, may incur complexity cost or obtain a non-optimal solution. In abstract
interpretation, most popular abstract relational domains such as Zones [24] or
Octagons [26] restrict the type of linear inequalities they encode. Researches
noted that Motzkin-Chernikova-Le Verge algorithm has a high complexity and in
some cases exponential complexity [34] when applied to eliminate redundant lin-
ear inequalities. Leveraging the efficient encoding for the Zones domain, Larsen
et al. [19] developed a more efficient algorithm which removes redundant con-
straints, with cubic complexity with respect to the number of program variables.

The slicing technique proposed in Green uses syntax-based rules to compute
transitive dependencies of constraints. While sound, this approach might over-
approximate the set of affected linear inequalities. Applying a precise “semantic-
based” slicing for a general linear inequality is a difficult problem. However, as
this work shows for Zones domain, it reduces to quadratic complexity. In this
work we propose several specialized algorithms for computing a minimal changed
set of linear inequalities for the Zones domain. For efficient encodings and op-
erations, relational numerical domains use rewriting rules [28] to convert linear
constraints into a canonical form. We also identify challenges such a canonical
representation causes in identifying minimal changes in an abstract state.

We evaluate our approach in the context of a data-flow analysis (DFA) frame-
work [18], where abstract interpretation computes invariants over program vari-
ables. Researchers in areas such as program verification [5,35] or program opti-
mization [1,17] use the computed invariants to accomplish their respective goals.

The goal is to improve the precision of comparing invariants of Zones against
ones of Interval and Predicate abstract domains by comparing only the part of



Zone state that changed. The importance of empirically evaluating domains has
been suggested previously [25] since domains differ in their expressiveness and
efficiency, and thus, finding an optimal domain is an important problem.

Evaluating our techniques to study the difference between incomparable do-
mains, e.g., Zones and Predicate domains [14], allows us to determine its effect
on decreasing the number of incomparable comparisons results. For example,
Zones can compute more precise values for some variables at the beginning of
a method, but later on, Predicates domain computes more precise values for
another set of variables. If analyses are compared using the entire state of each,
then results would be incomparable for the later part. However, using our ap-
proach, the comparison would indicate that the Predicates domain computes
more precise invariants in the latter part of the program.

Our main contributions for this work are:

– A problem definition and a collection of efficient algorithms to identify min-
imal changes for the Zones abstract domain.

– A demonstration of the effectiveness of our techniques at increasing precision
when comparing Zones to comparable and incomparable domains. Similarly,
demonstration that our techniques improve efficiency of domain comparison.

2 Background and Motivation

We illustrate problems with finding the minimal changed set of linear inequalities
for the Zones domain on a code example in Figure 1a and focus on changes to
the abstract state after taking the true branch in statement 4, i.e., changes to
the incoming state of 4 to the outgoing state of the true branch of state 4.

To better conceptualize the idea of the minimal changed state, we first con-
sider abstract states computed by an analyzer over the Intervals [8] domain. The
incoming state is x 7→ [0, 0], w 7→ (−∞, 2], y 7→ >, where the interval for x comes
from line 2; w comes from taking the true branch on line 3; and y, at this point,
is unbounded. After applying the transfer function for the true branch of line
4, the analyzer updates the value of y to (−∞, 0] without affecting values of x
and w. To identify changed variables, the analyzer simply checks the difference
in updated variable values between the two states since changes to one variable
do not induce changes in other variables.

2.1 Finding a Minimal Subset in Relational Domains

For a relational numerical domain, the analyzer produces the formula x =
0∧w−x ≤ 2 for the incoming state to line 4, the absence of the y variable means
it is a free variable. Interpreting the true branch of 4, the analyzer introduces:
y − x ≤ 0, resulting in a new outgoing state: x = 0 ∧ w − x ≤ 2 ∧ y − x ≤ 0.
Here, the minimal subset of inequalities contains x = 0 and y − x ≤ 0. Indeed,
only these two inequalities are sufficient to reason about the changed part of the
state.



1 int example ( int w, int y ) {
2 int x = 0 ;
3 i f (w <= x + 2) {
4 i f ( y <= x) {
5 a s s e r t y <= 0 ;
6 }
7 }
8 return x ;
9 }

(a) Example program

Z0

x

y w

0 0

20

(b) Zone state

Z0

x

y w

0 0

2

2

0

0
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Fig. 1: Example program and two equivalent Zones

Such a minimal subset is not easily identifiable. Green’s slicing technique
over-approximates it by including all inequalities through a syntax-based tran-
sitive closure. However, since x has not changed and is only used in y − x ≤ 0
to restrict y’s values, no changes occurred with respect to w, and hence, the
w − x ≤ 2 inequality remains the same. In our work, we show algorithms for
reasoning about such “semantic-based” slicing for the Zones domain. Before we
provide an overview of our approach, we present a brief background on the Zones
domain.

2.2 Zones Domain

The Zones abstract domain expresses specific relations between program vari-
ables. Zones limits its relations to unitary difference inequalities such as x−y ≤ b,
and interval inequalities such as x ≤ b and x ≥ b, where b ∈ Z. Equality rela-
tions are rewritten into a pair of two inequalities. For example, an x = y + b
relation results in x− y ≤ b and y−x ≤ −b. To encode an interval value such as
x = [1, 2], Zones use the following inequalities x ≥ 1 and x ≤ 2. To encode inter-
val valued variables as unitary difference constraints, Zones introduces a special
“zero” variable, denoted here as Z0, and rewriting rules. These rules change the
inequalities for the interval [1, 2] into x−Z0 ≤ 2 and Z0−x ≤ −1 where the value
of Z0 always equals 0. In this way, the Zones domain represents all inequality
constraints in a uniform x− y ≤ b template.

Inequalities in the Zones domain have an isomorphic representation as a
weighted, directed graph, which is efficiently encoded as a 2D matrix [9,24]. In
this graph, variables are nodes, the source and the sink of an edge identify vari-
ables in the first and the second positions of the difference template, respectively,
and the weight is the coefficient b.

To illustrate this representation, consider the graph in Figure 1b, which en-
codes the constraints from the running example. The solid lines denote the in-
equalities of the incoming state to statement 4; and the dashed line is the addi-
tional inequality after interpreting the true branch of line 4. Here, the edge from
x to Z0 is for x − Z0 ≤ 0 and the edge from Z0 to x is for Z0 − x ≤ 0 of the
rewritten x = 0 term. The edge from w to x represents w−x ≤ 2. Similarly, the
dashed edge from y to x represents the additional y − x ≤ 0 term.



2.3 Finding Affected Inequalities

In graph terms, the problem reduces to finding affected edges when an edge
is changed in the state graph. Naively, all edges reachable from the changed
variables are affected, i.e., a connected component (with undirected edges).

However, we should exclude nodes connected only through Z0 as a part of the
connected component since it might introduce spurious dependencies. Consider,
the state also has an edge from a variable w to Z0 with weight 2, which encodes
inequality w ≤ 2 represented as w − Z0 ≤ 2 in the canonical unitary difference
form. If Z0 is treated as a regular variable, then the technique would include
w − Z0 ≤ 2 in the set of affected inequalities. Our approach considers Z0 a
singularity and stops at Z0 when it transitively computes predecessors R− and
successors R+ of a node, for example, to identify connected components.

To improve on the connected component approach, our algorithms reason
about the directions of the edges in the graph. The outgoing edges from one
node to another means the second one restricts the first. In our example, w
has an outgoing edge to x, meaning x restricts w. The only changes that can
be propagated to w from an additional inequality, if x’s value would be further
restricted, manifests as a new or updated outgoing edge. However, after adding
y − x ≤ 0 inequality (the dashed edge), the only new outgoing transitions are
associated with y. Thus, in order to determine the affected inequalities we tran-
sitively compute the predecessors and successors of y, i.e., R−(y) = {y} and
R+(y) = {x, y, Z0}. The union of the two sets results in the subgraph of depen-
dent variables to y. In the next section we present formal algorithms and prove
their correctness.

2.4 Dealing with Spurious Inequalities

Relational numerical domains possess a powerful ability to infer new relations
between variables. In the Zones domain, it happens through computing transitive
closures for each variable. For example, since w can reach Z0, one can establish
that w ≤ 2. Later, when the x variable gets reassigned, w ≤ 2 remains in place.
Since inequalities describing a bounded region are not unique, Zones require a
canonical representation to enable operations such as equality comparisons. In
order to determine whether two Zones are equal, as needed in DFA’s fixed-point
algorithms, these states should be fully closed. That is, all inferred, transitive
constraints should be explicitly stated. Figure 1c shows the fully closed version
of the same graph as in Figure 1b, where dotted lines depict inferred edges.

Applying the previously described technique identifies three inequalities y ≤
x, x = 0 and y ≤ 0. Clearly, the first two constraints do not add any additional
information to the third. In fact, after closing, the newly added edge (y, x) be-
comes what we call a spurious edge since it falsely implies that y and x make up
a relational constraint, while in fact, since x is a constant, this is not the case.

Therefore, before finding affected inequalities, we identify such spurious edges
and remove them from the graph. The algorithm checks for a given connected
component containing changed variables whether an edge between two nodes



connected to Z0 carries additional information, otherwise it removes the direct
edge. In our example, the connected component containing potentially changed
variables are all nodes with an edge to Z0.

In our example, the algorithm removes edges (y, x) and (w, x). Now, node x is
no longer reachable from y, making R+(y) = {y, Z0}. For a fully closed state the
algorithm determines a single affected inequality: y ≤ 0. Thus, removing spurious
constraints helps with identifying smaller, truly connected components.

3 Finding the Minimal Changed Set of Inequalities

In this section, we first formally define the problem of finding a minimal changed
set of inequalities from Zones. We continue with a series of algorithms start-
ing with spurious constraint elimination, followed by different minimization ap-
proaches for arbitrary and fully closed Zones.

3.1 Problem Definition

Let N1 and N2 be sets of inequalities in the initial and updated states, respec-
tively. An inequality n of a Zone state can be uniquely identified by its first n1

and the second n2 variables in the unitary difference formula template. Let u be
the node representing n1 and similarly w = n2, then the corresponding edge n
in the state graph has u as its source and w as its target nodes.

For a given variable v, we define its dependent inequalities in N1 as

S1 = {n ∈ N1 | n1 ∈ R−N1
(v) ∨ n2 ∈ R+

N1
(v)}

where R−N1
(v) = P (v) ∪ {v}, and similarly, R+

N1
(v) = S(v) ∪ {v}. S2 is dually

constructed for N2.
Let dv be a nonempty set of updated variables that change N1 to N2. Then,

the problem of finding the minimal changed set of inequalities is equivalent to
finding the smallest S ⊆ N2 such that

S∩{n ∈ N2 | ∀v ∈ dv : n1 ∈ R−N2
(v)∨n2 ∈ R+

N2
(v)} 6= ∅ and S2 \id S ⇔ S1 \id S

Here, the first term ensures that the set S includes only affected inequalities.
The second term ensures that the set of remaining inequalities after removing
updated ones should be logically equivalent between the initial and updated
states. The equality in the set minus operation is determined by inequality IDs,
i.e., n1 and n2. That is, if two inequalities have the same order of variables, then
they are considered equivalent for set operations.

3.2 Minimization Algorithms

A straightforward solution to identify such an S would be to compare N1 and N2

directly, which would require an exhaustive search. Instead, our approaches only
take N2 as a graph Z, a set of updated variables dv, and a set of updated edges



Algorithm 1 Minimal Changed Set
1: function MinChangedSet(Z, dv, de, Method)
2: G← RemoveSpurious(Z)
3: switch Method do
4: case CC
5: G← ConnectedComponents(G, dv)

6: case NN
7: G← NodeNeighbors(G, dv)

8: case MN
9: G← MinimalNeighbors(G, de)

10: return G
11: end function

de. A DFA framework can directly provide the sets dv and de when it invokes
a transfer function. Using these three input values and a choice of minimization
Method, the pseudocode in Algorithm 1 computes the smallest set of changed
inequalities which it returns as a graph G.

On line 2, the algorithm invokes RemoveSpurious on the updated state Z.
The purpose of this method is to remove spurious dependencies in Z inferred
through Z0, thus creating smaller connected components in G. Next, on line 3,
the algorithm switches on Method. The rest of the algorithm computes mini-
mal changed sets based on the method selected: CC approach– ConnectedCom-

ponents; NN approach– NodeNeighbors, and lastly MN– MinimalNeighbors.
These algorithms approximate S differently and have different computational
complexity, which are varied based on the Zones representation. Gs of these al-
gorithms create a total order on the number of inequalities in the reduced state
GCC �|E| GNN �|E| GMN . The runtime complexity of Algorithm 1 is O(n2),1

which is dominated by the quadratic complexity of RemoveSpurious.

Spurious Connections The goal of the spurious constraint removal step is to
deal with inferences through Z0. Our approach for identifying spurious edges is
a special case of the reduction proposed by Larsen et al. [19]. That is, an edge
between two nodes can be removed from a Zone if the weight between them is
greater or equal to any path between them. Instead of applying this reduction to
the entire state, our algorithm considers only the path through Z0. This reduces
the runtime complexity from O(n3) to O(n2). We define a spurious directed edge
between s and t variables when (s, t) ≥ (s, Z0) + (Z0, t).

Algorithm 2 details the steps for this spurious edge removal. The algorithm
determines candidate pairs by selecting variables with connections to or from Z0,
line 1. Nodes not connected to the zero node can be excluded because any edge
is, by definition, non-spurious. It iterates over the candidate node pairs, line 9
and for each pair, it checks the spurious edge criterion on line 10. If the criterion
is satisfied, the edge is removed, line 11. The correctness of the algorithm comes

1The average is usually less due to sparsity in graphs.



Algorithm 2 Removal of spurious dependences in G
1: function RemoveSpurious(G)
2: C ← {}
3: for s ∈ V(G) do
4: if (s, Z0) 6= > ∨ (Z0, s) 6= > then
5: C ← C ∪ {s}
6: end if
7: end for
8: for s ∈ C do
9: for t ∈ C do
10: if s 6= t ∧ (s, t) ≥ (s, Z0) + (Z0, t) then
11: (s, t)← >
12: end if
13: end for
14: end for
15: return G
16: end function

from the spurious edge criterion: it never removes an edge inferred by Z0 that
is not redundant. Furthermore, spurious edges represent redundant constraints,
therefore, removing them does not cause precision loss.

Connected Components For an arbitrary Zone, we can safely over-approximate
all affected inequalities from dv by identifying a connected component containing
dv. Note, that changed variables are always in one component, since an update
to a Zone creates an edge between them. Identifying dv’s connected component
reduces to discovering the undirected, reachable nodes of each v ∈ dv in the
spurious reduced Zone. The CC algorithm is a modified depth-first search algo-
rithm, with O(n2) runtime complexity. In the beginning, the algorithm marks
the special Z0 node as visited, thus, preventing discovery of new paths through
it, lest we undo the reduction of Algorithm 2.

The CC algorithm is the same for arbitrary, non-closed Zones and fully closed
Zones. The resulting sets of changed variables, however, may differ. The set
of inequalities of fully closed Zones are minimized but often more connected.
However, more connections enables more spurious reductions, therefore, leading
to smaller connected components.

Node Neighbors The Node Neighbors (NN) algorithm for an arbitrary Zone
state is presented in Algorithm 3. In essence, the algorithm searches for the
successor and predecessor of each changed variable, line 3. ForwardReachable
returns the set of all reachable successor variables for each changed variable, v ∈
dv, using a typical depth-first search. BackwardReachable is similarly defined for
reachable predecessor variables. In both cases, the zero variable receives special
consideration. That is, we specially treat the zero variable as a sink with no
outgoing edges during traversal.

The complexity of NN is O(4n2) because there are at most 2 changed vari-
ables from the DFA framework, and we do DFS twice per variable.



Algorithm 3 Algorithm for node neighbor selection for arbitrary Zones.
1: function NodeNeighbors(G, dv)
2: variables ← {}
3: for v ∈ dv do
4: variables ← variables ∪ ForwardReachable(G, v)
5: variables ← variables ∪ BackwardReachable(G, v)
6: end for
7: return variables
8: end function

Algorithm 4 Minimize Changed Variables Algorithm
1: function MinNeighbors(G, de)
2: variables ← {}
3: for (s, t) ∈ de do
4: if s = Z0 then
5: variables ← variables ∪ {t}
6: else if t = Z0 then
7: variables ← variables ∪ {s}
8: else if s 6= Z0 ∧ t 6= Z0 then
9: variables ← variables ∪ {s}
10: end if
11: end for
12: return NodeNeighbors(G, variables)
13: end function

When given a fully closed Zone, the NN complexity is reduced. The form of a
fully closed Zones makes explicit all transitively related variables. That is, the set
of successors and predecessors of a variable in a fully closed Zone is equivalent to
the local neighborhood of the variable, R−G(v)∪R+

G(v) = N±G (v). Therefore, NN
for the fully closed Zones simply returns the inequalities incident to the neighbor
set of the requested variable.

The complexity and accuracy of finding a minimized state can be reduced for
Zones in fully closed canonical form, where all dependencies are explicit. Thus, to
identify affected inequalities by dv, we need to find incoming and outgoing edges
of dv since they are potentially affected by those updates. The NN algorithm
takes dv and a reduced state graph G, and retrieves all incoming and outgoing
edges of dv, then uses them to identify its neighbors. The local subgraphs for each
v ∈ dv represent the identified changed inequalities. The runtime complexity of
NN is linear O(n), since it only considers each associated edge of dv.

The correctness of NN relies on the dependency information encoded in the
successors and predecessors set. If a variable u is not in the R−G(v) ∪ R+

G(v) set
for v, then v does not depend on or relate to u. Furthermore, since u is not in
this dependency set, it has not changed from the previous state. Therefore, the
variable u can be removed from the dependent inequality set returned by NN.



Minimal Neighbors The previous CC and NN minimization algorithms as-
sume that all updated variables, dv, modify inequalities within a Zone state,
however, that may not always be the case. An updated variable might not in-
duce changes to the state. The Minimal Neighbors (MN) technique improves
upon this over-approximation by considering the set of updated edges de in
a Zone state. DFA framework can provide this information when processing a
statement, e.g., an assignment or a conditional statement. Notice, that sources
and targets of an edge in de are always in dv, but additional computation is
required to identify de.

Algorithm 4 shows the pseudocode for identifying the changed variables
among updated edges. Specifically, the algorithm takes as input G produced
by RemoveSpurious and a set of updated edges, de. It starts by iterating over
the set of updated edges, line 3. For each edge, the algorithm checks whether
the source or target is the zero node, Z0. If so, then the other node from the
edge pair is added to the variables set, lines 5 and 7. This case handles when
updates are on intervals because we must always include the non Z0 variable in
the filtered set of changed variables.

If neither source nor target is Z0, then the source of the edge is added to the
variables set, line 9, since this corresponds to the target variable restricting
the source node, while the former remains unchanged for that edge. Finally, on
line 12, the algorithm invokes NN procedure on G and the computed changed
set of variables, and returns the minimized graph. The runtime complexity of
MN is equivalent to NN: O(4n2). Similarly, if G is fully closed, the complexity
is O(n).

Below we provide a proof sketch that shows that for a given G from Re-

moveSpurious algorithm and an updated edge (s, t), the variable of its target,
t does not change if the edges (t, s) and (Z0, s) do not exist. That is, the target
variable is never added to the variable set in Algorithm 4.

Proof. Given G with an updated edge (s, t) corresponding to the additional
constraint s − t ≤ c, for some c ∈ Z. For the purpose of contradiction, let us
assume t has changed as a result of the update from s− t ≤ c. This means either
there exists a path from t to s or that there exists a path (Z0, s). But existence
of such paths violates our assumption that t, Z0 /∈ R−G(s). Therefore, t remains
unchanged by the addition of the edge (s, t).

3.3 Widening and Merges

A few situations require special treatment for state updates in DFA. First, widen-
ing and merge points in the CFG of the analysis may induce more changed
variables. Second, conditional transfers tend to modify more than a single vari-
able, e.g., two variables in three address form. Therefore, to ensure accurate
and minimal comparisons, our techniques and comparisons must handle these
situations. However, this is easily accomplished by each of our techniques since
the parameter, dv for Algorithm 1 is a set of changed variables.



4 Experiments Methodology

To determine if the proposed minimization algorithms are efficient and effective,
we evaluate them using subject programs within an existing DFA analyzer. For
each subject program, we compute invariants at each statement for each ab-
stract domain. Over the corpus of methods, we compute 4529 total invariants.
The invariants are stored as logical formulas in SMT format. We run analysis
on three domains: Zones, Intervals and Predicates, and compare the first with
the last two using queries to an SMT solver. Since previous research demon-
strates advantages of using fully closed Zone states [4], our experiments evaluate
minimization algorithms for that canonical representation.

To evaluate the efficacy of CC, NN and MN, each after computing spurious
constraint reduction, we compute the reduction in the number of variables and
inequalities in the SMT formula of Zone invariants over the preceding techniques
in �, i.e., CC vs. full state (FS), NN vs. CC, and MN vs. NN. That is, we
compute the percentage of change per program statement and then average
them over all methods. We use percentage, and not absolute values since the
number of variables changes from statement to statement. Similarly, we compute
the average percentage change for inequalities. Since program branches compute
possibly different sized sets of variables and inequalities, we take the maximum
number of variables and inequalities between the two.

Using the invariants computed for Zones, Intervals, and Predicates, we entail
the invariants to compare the precision of Zones vs. Intervals and Zones vs.
Predicates for each minimization algorithm. The results for Interval’s invariants
are classified as less precise ≺ or equal =. Predicates extend these categories to
include more precise � or incomparable ≺� to Zones.
Subject Programs Subject programs consist of 127 Java methods used in pre-
vious research [3,31]. Methods from the DFA benchmark suite [31] were extracted
from a wide range of open-source projects and have a high number of integer
operations. The subject programs range from 4 to 412 Jimple instructions, a
three address intermediate representation.

The EQBench suite [3] consists of method pairs for testing differential sym-
bolic execution tools [2,30]. We sampled only original methods and excluded
renamed equivalent methods.
Experimental Setup We execute each of the analyses on a single GNU/Linux
machine, running Linux kernel version 5.15.89, equipped with an AMD Ryzen
Threadripper 1950X 16-Core Processor and 64 GB of system memory. We use
an existing DFA static analysis tool [31] implemented in the Java programming
language. The analysis framework uses Soot [29] version 4.2.1. Similarly, we
use Z3 [27], version 4.8.17 with Java bindings to compare SMT expressions
from the abstract domain states. Finally, we use Java version 11 to execute the
analyses, providing the following JVM options: -Xms4g, -Xmx32G, -XX:+UseG1GC,
-XX:+UseStringDeduplication, and -XX:+UseNUMA.
Implementation We use the reduction from Larsen et al. [19] to create an
equivalent, but reduced invariant expression at each program point. We com-
bine the output states via logical entailment to compare Zones to Intervals and



to Predicates. The set of variables in a minimized Zone state determines what
variables are extracted from the corresponding full states of Intervals and Predi-
cates. After entailment, we use Z3, using the linear integer arithmetic (LIA) logic,
to decide model behavior of each domain. Using the GNU time [13] command,
version 1.9, we capture the walk-clock execution time of Z3.
Evaluations Intervals and Zones perform widening operations after two iter-
ations over widening program points. We do not preform narrowing for either
domain because narrowing is program specific. The lack of narrowing does not
affect our results since we are evaluating techniques for identifying minimal sub-
sets of changes, not techniques for improving precision.

We use a generic disjoint Predicate domain, which does not affect general-
ity of the results. The Predicate domain’s elements are influenced by Collberg
et al.’s [7] study on Java programs and numerical constants. Consequently, the
domain elements use several of the most common integer constants found in
Java programs. The specific Predicate domain used in this study consists of the
following set of disjoint elements: {(−∞,−5], (−5,−2], −1, 0, 1, [2, 5), [5,+∞)}.

5 Evaluation Results and Discussions

To empirically evaluate efficiency and effectiveness of the state minimization
algorithms, we answer the following research questions:

RQ1 How well do the minimization algorithms reduce the size of a Zone state
and improve runtime of domain comparisons?

RQ2 How do the minimization algorithms affect categorization of domain com-
parison results?

5.1 Impact of Minimization on State Size and Comparison
Efficiency

Table 1 contains data for efficiency evaluation, split over the two benchmark
suites. The table shows the average percentage reduction in vertices and edges
in Zones, comparing to the preceding minimization algorithm (columns 2–4); and
as a reduction in total runtime for all comparisons between Zones and Interval
states (column 5) and between Zones and Predicates (column 6).

We aggregate the relative change in vertices and edges over all subject meth-
ods for a more tractable comparison. We use the percentage change to answer
the first part of RQ1 related to state sizes. The data show a large reduction in
the number of vertices between FS and after applying CC algorithm. The num-
ber of edges features a similarly significant, though less dramatic reduction since
they are compared without spurious constraints. On average, we see small reduc-
tions in the rest of the comparisons. The difference in vertex reductions versus
edge reductions is due to the reduced number of vertices required, contrasted
with edge sparsity arising from widening and merge operations which affects all
representations. However, as the small reduction of edges between MN and NN



DFA Subject Programs

State Type vs. ↓ ∆ % V ↓ ∆ % E ∼ Inter, sec. ∼ Pred, sec.

FS - - - 4.03 265.91

CC FS 70.37 29.47 1.41 4.09

NN CC 0.02 0.01 1.41 4.04

MN NN 0.10 0.05 1.35 4.05

EQBench Subject Programs

FS - - - 0.79 5.56

CC FS 43.0 2.1 0.63 0.87

NN CC 0.0 0.0 0.58 0.9

MN NN 0.13 0.13 0.58 0.9

Table 1: Average percentage changes in V and E between each technique
(columns 2–4), and average total runtime of state comparisons (columns 5,6).

shows that after removing more vertices from the subgraph, we remove more
edges as well.

The EQBench results mirror the reduction of edges and variables. In the
EQBench benchmark suite, we see no reduction between CC to NN. However,
our final approach does remove vertices and edges from the previous techniques
of CC and NN. This reduction is attributable to the bisection enabled by our
final technique which further reduces sparse graphs based on the semantics of
the changed constraint.

Addressing the second part of RQ1, we compare the average total runtime
of comparisons over the corpus of subject programs. Columns 5 and 6 of Ta-
ble 1 show the total runtime to execute all domain comparisons, averaged over 5
executions, and broken down by benchmark suite. Between FS and CC, we see
dramatic reductions in total time. As expected the remaining techniques show
small improvements in comparison time due to the minor reductions of vertices
and edges shown in columns 2–4. The increase in time for Zone and Predicate
comparison for the EQBench subject programs is attributable to execution vari-
ance. Overall, our minimization algorithms reduce the size of Zone states and,
in turn, improve the efficiency of domain comparisons.

5.2 Impact on Domain Comparison

Comparable domains We compare Zones and Intervals invariants to answer
RQ2. We break down the results by benchmark suites in Table 2. Columns 2
and 3 show the precision summary of invariants between Zones and Intervals.

In the DFA suite, using FS to compare each domain, Zones compute more
precise invariants for approximately 3/4 of the total number of invariants. How-
ever, the ratio drops significantly to less than a third, (31%), when using the
CC technique. Our final technique MN lowers the percentage of invariants where
Zones are more precise to about 30% of all computed invariants. Furthermore,
our techniques demonstrate the preponderance of invariants where Zones and



DFA Subject Programs

State � Intervals = Intervals � Pred = Pred ≺ Pred ≺� Pred

FS 2898 1002 1464 237 167 2032

CC 1194 2706 1324 1930 473 173

NN 1191 2709 1322 1933 473 172

MN 1164 2736 1305 1960 473 162

EQBench Subject Programs

FS 374 255 307 135 46 141

CC 131 498 217 322 72 18

NN 131 498 217 322 72 18

MN 131 498 217 322 72 18

Table 2: Summary of comparison between Zones and Intervals(2, 3), and between
Zones and Predicates (4–7).

Intervals are equivalent. We see similar results when considering the methods of
the EQBench suite. Using the full state to compare Zones and Intervals, we see
Zones compute a majority of more precise invariants, about 59%. However, using
any one of our minimization techniques moves the proportion of more precise in-
variants to 21%. We attribute the lack of further reduction with later techniques
to the preponderance of non-integer operations in the EQBench suite.

Incomparable Domains Additionally, with respect to RQ2, we compare Zones
to Predicates to evaluate whether our techniques minimize the number of incom-
parable invariants computed between the two domains. Since Zones and Predi-
cates are incomparable, we consider all comparison categories denoted here as:
� Pred for Zones more precise than Predicates; = Pred for Zones equivalent
to Predicates; ≺ Pred for Zones less precise than Predicates; and ≺� Pred for
Zones and Predicates being incomparable.

Columns 4–6 of Table 2 summarizes the distribution of relative precision
for Zones and Predicates over the computed invariants of the subject programs.
Unlike Zones, Predicates cannot represent arbitrary integer constants; Predicates
are limited to the a priori chosen predicate elements. However, Predicates can
represent disjoint ranges of values which Zones, and other numerical domains,
cannot. As such, when using FS, we see a high percentage of invariants fall into
either � Pred and ≺� Pred. The � Pred makes up about 38% of invariants.
Similarly, ≺� Pred weighs in at ∼ 52% of invariants.

When, applying CC, the percentage of incomparable invariants drops signif-
icantly to 4%. ≺ Pred comprise 12% of invariants, up from 4%. Similarly, the
percentage of � Pred drops from 38% to 34%. Finally, equality between the two
domains significantly increased from 6% to about 49%. These trends continue for
each technique. Each technique shifts the distributions of invariants from � Pred
and ≺� Pred to = Pred and ≺ Pred. In MN state, Zones are more precise for
about 33% of invariants, down from 38%; Zones are equal to Predicates for about
50% of invariants, up from 6%; and Zones and Predicates are incomparable for
about 4% of invariants, down from 52%. For each technique, Zones less precise



than Predicates remained at 12%, up from 4% compared to FS, between the
techniques. Considering the EQBench methods, we observe similar results for
Zones and Predicates. Using the CC technique, we see a significant shift in the
distribution of invariants. However, we do not see any further distribution shifts
in this program set. We attribute this to the fact that the EQBench methods
consist of many non-integer operations.

Clearly, our techniques reduce the percentage of incomparable invariants, en-
abling, for example, more accurate comparison between Zones and incomparable
domains, such as Predicates. While not the goal of this study, the comparable
results confer merit to previous research which anecdotally mentions: the major-
ity of computed invariants are interval valued [10,16]. This improved accuracy
would be especially valuable in adaptive analysis approaches where a heuristic
decides which abstract domain to utilize for a specific block of code.

5.3 Threats to Validity

External Threats The subject programs from previous research [3,31] were
extracted from real, open-source projects, each with a high number of integer
operations. The EQBench suite consists of predominately numerical programs
but demonstrate the generalizability of our results. Other concerns include the
choice of Predicate elements and lack of narrowing which could influence the
precision counts between Zones and Predicates and between Zones and Intervals,
respectively. However, since we examine only the trend of the different categories,
the exact precision does not affect our conclusions.
Internal Threats To mitigate internal threats to validity, we developed a large
test suite, 703 unit tests, to ensure our implementation is correct. The test
suite contains numerous tests which check the consistency of the partial order
over Zones and Intervals. Furthermore, we developed and manually verified tests
to check comparison between Zones and Predicates. Specifically, the test suite
contains manually verified tests which use real subject programs to test the
correctness of the analyses and their comparisons.

6 Related Work

We have mentioned our spurious reduction technique is based on the work by
Larsen et al. [19]. Their algorithm removes all redundant constraints without
removing variables, reducing the overall number of linear integer inequalities
but it does not reduce the number of variables. Along similar lines, Giacobazzi
et al. [12] proposed techniques for abstract domain compression for complete
finite abstract domains. That is, it reduces the number of constraints within the
logical formula without altering the approximation of the abstract domain. Our
techniques extract subsets of the state for specific verification tasks.

Our approach, Connected Components (CC), resembles the slicing technique
of the Green solver interface [33] and split normal form introduced by Gange
et al. [10,11]. Our approach differs from Green in application and restriction to



Zone constraints. Slicing can extract connected constraints by what variables are
present in the set of constraints. However, we can exclude transitive relations
between variables because within Zones, not all variables are modified by the
introduction of a new constraint.

We base our methodology on previous work on new abstract domains which
provide a comparison of the new domain against other known similar or com-
parable domains. These comparisons can be categorized into two predominate
strategies. The first, domains are compared via a known set of properties over
benchmark programs [10,15,16,20,23]. The second, domains are compared via
logical entailment of the invariants computed at program points [25,31]. In the
first case, the comparison is straightforward. In the latter case, as this work
demonstrates, the precision between two domains can depend on the set of in-
variants used to perform the comparison.

7 Conclusion and Future Work

We proposed several techniques which identify a minimal set of changed inequal-
ities for the Zones abstract domain. Our techniques improve upon existing tech-
niques such as Green’s slicing [33] technique which further reduces the number
of dependent variables within a changed set of inequalities. We empirically eval-
uated our techniques and showed improvements of efficacy and efficiency. Con-
cretely, the changed subgraph of Zones is equivalent to Intervals in more than
70% of computed invariants, a result commented on but never demonstrated
in previous research [10,16]. Moreover, our techniques significantly reduced the
incomparable invariants found when comparing two incomparable domains, re-
sulting in a clearer picture of the relative precision between the two domains.
Furthermore, the reduction in variables improved the efficiency of domain com-
parison, reducing average total runtime of incomparable domain comparisons
by 98%. While evaluated within the context of DFA frameworks, we presented
general algorithms which, we believe, are applicable in other areas of formal
methods such as model checking and symbolic execution.

Future Work We intend to extend this work to include additional relational
domains. Specifically, enabling comparison between two relational domains, such
as Zones and Octagons, is an interesting avenue to pursue. Since the techniques
improve accuracy in comparison between domains they could be beneficial for
adaptive static analysis techniques which selectively use the best abstraction. We
believe this work also opens up possibilities of comprehensive studies which em-
pirically validate several abstract domains and their partial ordering. Specifically,
it would be interesting to see comprehensive comparisons between Predicate do-
mains and Zones.
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