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Abstract. The Zonal numerical domain is an efficient, weakly-relational
abstract domain in static analysis by abstract interpretation. Compared
to the Interval domain, the Zonal domain is capable of discovering weak
relations between two program variables. To reason about Zonal states,
it is imperative that they are transformed into a canonical closed form.
This task is accomplished through the transitive closure operation com-
monly implemented as the all-pairs shortest path algorithm, with O(n3)
complexity, where n is the number of program variables.
In this work, we explore the closed form of Zonal states in the context of a
data-flow analysis framework. Also, we present an incremental transitive
closure algorithm that preserves a closed form of an updated Zonal state.
The algorithm reduces the overall analysis complexity to O(n2). We eval-
uate our approach by performing intra-procedural Zonal analysis on 63
real-world programs. The results show an improvement in runtime, es-
pecially on large programs. For example, an hour-long analyzer run with
the traditional Zonal implementation has been reduced to a minute with
the proposed incremental Zonal variant.

1 Introduction

Abstract interpretation (AI) [4] is an essential technique for supporting various
software engineering and programming languages tasks. Used in the context
of data-flow analysis framework [7], AI assists a static analyzer with computing
invariants over program variables. Then areas such as program verification [2,16]
or compiler optimization [6,1] exploit these invariants to accomplish their tasks.

To capture the abstract semantics of a program, AI employs abstract nu-
merical domains, which vary in their expressive power. The Interval domain ab-
stracts program variables into a single continuous interval. Relational numerical
domains, such as the Zone and Octagon domain [10,9], are more expressive be-
cause they represent relations between program variables. However, the expres-
siveness of relational numerical domains comes with a higher runtime cost [9].
The Zonal domain is the most efficient among relational domains, but it still
timeouts on large programs because of its cubic complexity in terms of program
variables [10]. This complexity comes from the transitive closure algorithm for
computing canonical representations for Zonal states, which is imperative when
comparing Zonal states or identifying infeasible states.

In this work, we investigate the full closure property of Zonal abstract states
in the context of a data-flow static analysis framework. While previous work [10]
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(a) Graph representation of a Zonal state.
Dashed edges are implicit relations.
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(b) Difference Bounded Matrix encod-
ing of the graph on the left. Dashed
boxes denote implicit relations.

Fig. 1: A directed graph for x1 = 1, x2 = 2 and x1−x3 ≤ 3 and the corresponding
difference bounded matrix encoding .

defines transfer functions on the Zonal domain regardless of its full closure prop-
erty, we observed that the fixpoint algorithm frequently compares the Zonal
states from the current and previous iterations, which requires invocation of the
closure algorithm. This observation prompted us to explore whether the effi-
ciency of transfer functions for fully closed Zonal states can be improved.

We evaluated three implementations of Zonal states in an intra-procedural
branch-sensitive data-flow analysis framework on 63 real-world programs. We
constructed our experiment to answer the following two research questions:
RQ1: In the context of data-flow analysis, does the propagation of fully closed
Zonal states improve runtime efficiency of the analysis?
RQ2: In the context of data-flow analysis, is the proposed incremental transitive
closure algorithm more efficient than a conventional closure implementation?

Before we answer these questions in Section 4, we first present necessary
background on Zonal abstract domain and then proposed algorithm in Section 3.
We conclude with the paper’s summary and directions for future work.

2 Zonal Abstract Domain

The Zonal [10] abstract domain is a weakly-relational domain that includes only
constraints of the form x−y ≤ c, where x and y are program variables and c is a
numerical constant, in our case an integer. To represent constraints of the form
x ≤ c in the above canonical form, a special “zero” variable, Z0, is introduced.
Since its value is always 0, the constraint becomes x− Z0 ≤ c. The set of linear
inequalities represents a bounding region of program variables’ possible values.
Representation. The advantages of Zonal domain are that its state can be effi-
ciently represented as a directed graph, and operations on states reduce to graph
operations. Figure 1a gives a graph example and Figure 1b the corresponding
encoding as a difference-bounded matrix (DBM) [5]. Here, a constraint x−y ≤ c,
is an edge with weight c from the source node x and the target node y. The con-
straints encoded in Figure 1a (in solid lines) are x1 = 1, i.e., x1 − Z0 ≤ 1 and
Z0−x1 ≤ −1, x2 = 2 and x1−x3 ≤ 3. Dashed lines represent implicit relations,



Algorithm 1 Forget operation for a traditional Zonal state

1: function CloseAndForget(k)
2: for i = 0 to N do . Close connected paths
3: for j = 0 to N do
4: if (i 6= j ∧ j 6= k) then
5: Mij ← min (Mij ,Mik + Mjk)
6: end if
7: end for
8: end for
9: for i = 0 to N do . Forget constraints connected to k
10: if i 6= k then
11: Mik ← >
12: Mki ← >
13: end if
14: end for
15: end function

while the absence of edges indicate unbounded relations between variables. Thus,
no edge from x3 to x1 indicates the unbounded relation x3 − x1 ≤ +∞.

The DBM representation places source nodes in rows and target nodes in
columns in the same order, and weights between them are elements of the matrix,
e.g., the x1 row and the x3 column represents the relationship x1 − x3 ≤ 3, and
> values indicate unbounded relations. The values in dashed boxes are implicit
relations that are computed by a transitive closure algorithm.

Canonical form. To efficiently compare two Zonal states using their DBM
encoding, and perform other essential operations used in a data-flow framework
(e.g, intersection, least-upper bound), it is essential that Zonal states are in
the same canonical representation. In the previous example, the set of constraints
with solid lines and the same set augmented with implicit constraints (dashed
lines) describe the identical bounded region, yet their DBMs are different. Miné
[10] proposed a canonical form by transitively closing the set of constraints in
a Zonal state. That is, the canonical form where all constraints are explicit, no
additional constraints can be inferred. This form is often called fully closed.

Essentially, the transitive closure adds implicit constraints, but also tightens
the constraints represented by the DBM. Thus, given a DBM M , the transitive
closure of M with n = |M | yields the following property: ∀i, j, k ∈ {0, 1, . . . n},
mij ≤ mik+mkj on elements of M . To transform M into this canonical form, re-
searchers commonly use an all-pairs shortest path algorithm, such as the Floyd-
Warshall algorithm [3]. Unfortunately, it has Θ(n3) complexity. In fact, this
algorithm is primarily the reason for Zonal domain analysis has O(n3) complex-
ity [10].

Operations. A transfer function of a Zonal state interprets semantics of a state-
ment in terms of removal of existing constraints, i.e., forget operation, and ad-
dition of a new constraint, i.e., add operation. The add operation only requires
updating a single element of the state’s DBM.



Algorithm 2 Incremental Closure Algorithm

1: function IncrementalClosure(s, t, c, M)
2: N ← length(M), W ← {t}
3: if addConstraint(s, t, c) then
4: for i = 0 to N do
5: if addConstraint(s, i, Mst + Mti) then
6: W ← W ∪ {i}
7: end if
8: end for
9: for i = 0 to N do
10: for w ∈ W do
11: addConstraint(i, w,Mis + Msw)
12: end for
13: end for
14: end if
15: end function

However, the forget operation for traditional Zonal states requires addi-
tional care, since removing an edge causes all implicit constraints to also disap-
pear, which results in precision loss. Thus, if in Figure 1a the implicit constraints
x3 ≥ −2 inferred by x1−x3 ≤ 3 and x1 = 1 is not made explicit before reassign-
ing x1 (which leads to removing all incoming and outgoing edges from the x1
node), then the value of x3 becomes less restricted. As such, the forget operation
has an intermediate path closure step (lines 2–8 of Algorithm 1) that discovers
all implicit paths through the node marked for removal. Afterwards, the algo-
rithm removes all constraints connected to the removed node (lines 9–14). Note,
this operation does not remove the variable, instead it removes the constraints
associated with the variable, thus making it unbounded. Algorithm 1 presents
pseudocode for forget as in previous work [10] and has O(n2) complexity.

If a data-flow framework propagates fully closed Zonal states, however, then
the first part of the algorithm on lines 2-9 becomes unnecessary. Thus, for closed
Zonal states, the complexity of forget operation becomes O(n). This complexity
reduction comes with a cost – the framework should transform states to their
fully closed form (O(n3)). Although, a data-flow framework already requires
closed Zonal states to perform state comparisons, feasibility checks, and other
operations. Hence, the fully closed property of a Zonal state could eliminate
invocation of closure algorithm in the context of the framework.

3 Incremental Closure

Since the data-flow framework favors the fully closed form, we investigate whether
we can modify the transfer function’s operations add and forget such that for
a given fully closed Zonal state they produce a new, fully closed state.

In this case, a constraint removal through forget operation is the same as for
closed Zonal states. If a state is fully closed, then a removal of an edge maintains
such a property since no new inferred constraints could be discovered. But add



operation requires additional considerations. For Zonal states, we propose a novel
incremental closure algorithm, which after adding a constraint, also discovers
all minimal constraints that can be inferred through that edge. The algorithm
computes edges between the source node’s parents and the target node’s children.

Algorithm 2 presents the pseudocode for the DBM encoding. The parameters
s and t are indices of the closed DBM M for the source and the target nodes,
and c ∈ Z is the constant. If the added constraint is tighter than the existing
one, i.e., AddConstratint returns true, then it proceeds to discover new implicit
constraints. Then the algorithm constructs a worklist of all children which are
affected by the addition of the new constraint (lines 4-8). Using this worklist
and the parents of s, the algorithm computes the minimum constraint between
all the parents of s and the children of t (lines 9-12). The complexity of the
incremental transitive closure algorithm is O(n2) from the two nested loops on
the same lines.

Following is a proof of correctness for Algorithm 2.

Theorem 1. Given a fully closed Zonal state in DBM encoding and a new con-
straint with s, t and c parameters, the IncrementalClosure algorithm computes
a correct, fully-closed DBM.

s

s0 sl

. . . . . .

t

t0 tm
. . . . . .

Fig. 2: Example graph representation of M during induction step. The dashed
cyan edge represents the additional edge (s → t); blue edges represent parents
of s connecting to t; magenta edges represent s connecting to children of t; and
green edges represent parents of s connecting to children of t.



Proof. Let V be a finite set of program variables such that s, t ∈ V .
We prove by induction on the number of edges of M , with the full closure

property as our induction hypothesis.

Case 1. Base Case. Our DBMM has k = 0 edges and it is closed. Sincemij = >
∀i, j ∈ {0, 1, . . . |V |}. Therefore, our full closure property, ∀i, j, h ∈ {0, 1, . . . , |V |},mij ≤
mih +mhj , holds.

Case 2. Induction. We assume DBM M with k edges, M is fully closed, and no
edge exists between node s and t, i.e., s− t ≤ >.
Adding edge s→ t, we have k + 1 edges.
Let S = parent(s) ∪ {s} and T = children(t) ∪ {t}. The edges to be recom-
puted consists of edges from sl → tm,∀sl ∈ S and ∀tm ∈ T . We need to
show the full closure property holds.
Case (a) Parents of s connect to t. This case connects to blue edges in Fig-

ure 2.
∀sl ∈ S, we connect

∗
mslt ← min (mslt,msls +mst)

where
∗

mslt is the new edge weight for edge sl → t.
Case (b) s connects to members of T . This case connects to magenta edges

in Figure 2.
∀tm ∈ T , we connect

∗
mstm ← min (mstm ,mst +mttm)

where
∗

mstm is the new edge weight for edge s→ tm.
Case (c) S connects to T . This case connects to green edges in Figure 2.
∀sl ∈ S and ∀tm ∈ T , we connect

∗
msltm ← min (msltm , ,msls +mst +mttm)

← min
(
msltm ,msls +

∗
mstm

)
where

∗
msltm is the new edge weight for edge sl → tm.

Since either msltm was already constrained by some h or the addition of
edge s → t induced a new minimum which was computed above, therefore,
msltm ≤ mslh +mhtm ,∀h ∈ {0, 1, . . . |V |} holds. ut

4 Evaluations and Results

To evaluate the proposed approaches, we implemented three Zonal branch sensi-
tive intra-procedural analyses: traditional, closed and incremental. We used the
Soot (v. 4.2.1.) data-flow framework [14] that has been extended to support
numerical abstract domains [11]. We evaluated these implementations on real-
world programs and compared their runtimes. We used the obtained data to
answer our two research questions.
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Fig. 3: Average runtime grouped by program sizes. Dotted boxes – incremental,
solid boxes – closed, and dashed – traditional Zonal abstract domains.

Benchmarks. Our benchmark set consists of 63 real-world Java methods with
non-trivial number of integer operations [12]. To better evaluate the scalability
of Zonal implementations, we partitioned the methods into three (3) groups:
“small”, “medium”, and “large”. The median instruction count for “small”,
“medium”, and “large” is 23, 156, 468, respectively.

Environment. To avoid inconsistencies within JVM startup times and other
experiment supporting operations, we record only the time each analyzer spends
performing fixed-point computations. We run each Zonal implementation five
times on each program and use the average time as data points.

Results. Figure 3 shows runtime results of our experiments as box plots (mil-
liseconds, log scale y-axis) for each benchmark group (x-axis). The data shows
that closed (solid boxes) performs slightly better than traditional (dashed boxes)
Zonal states. Although both Zonal variants invoke the full closure operation at
each statement, closed uses the full closure property to avoid invocation of this
operation at merge and widening points, and when computing branch feasibility.
Moreover, the forget operation for closed has a linear complexity, while the same
operation for traditional has a quadratic complexity.

Thus, these improvements contribute to closed outperforming traditional im-
plementation. However, after performing a t-test, we found no statistically signif-
icant differences for all program sizes for p ≤ 0.05 (for the large group, runtimes
become significantly different at p ≤ 0.07). This small difference in closed over
traditional is due to the dominating cubic complexity of the transitive closure
algorithm. Thus, we see a slight improvement of closed Zonal state implementa-



tion over traditional, which indicates that propagating fully closed Zonal states
is more efficient in the context of data-flow analysis.

We observe that incremental is more efficient compared to closed, especially
for the large program group. Also, the growth of incremental is less steep than
the other two variants, because the former is dominated by the quadratic and
the latter by the cubic growth complexity in terms of program variables. The
data for large program supports this difference in complexity, where the median
runtime for incremental is about 103 ms, while for closed is about 104 ms.

T-test analyses show no statistical differences for the small group, but found
them for the other two groups. The p value for incremental vs. closed for the
medium group is 0.004 and for the large group is 0.002. Thus, we can conclude
that our proposed incremental transitive closure algorithm is more efficient than
a conventional closure algorithm in the context of a data-flow framework.

5 Conclusion

In this paper, we analyzed propagation of fully closed Zonal abstract states in
the context of a data-flow static analysis framework. In addition, we proposed
a novel incremental transitive closure algorithm for the Zonal abstract domain
and showed analytically and experimentally that it reduces analysis time by an
order of magnitude, especially on larger programs.

The representation of DBMs are borrowed from previous work in the model
checking community [5,8,15]. This work may be relevant to applications within
model checking techniques that require canonical representation of DBMs. In
future work, we intend to extend the incremental closure algorithm to allow for
more efficient implementations of other canonical forms besides the fully closed
canonical form. For example, a canonical form that eliminates relations between
constant values, or a minimal canonical form [8].
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